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Erwinia tracheiphila (E. F. Smith) Holland, the causal agent of
bacterial wilt of cucurbits, was one of the first bacterial plant path-
ogens ever described (Smith 1911). In 1893, pioneering plant pa-
thologist Erwin F. Smith witnessed “entire fields of cucumbers,
cantaloupes, and of winter squashes” destroyed by the disease in
Michigan, United States. More than 120 years later, bacterial wilt
still menaces many cucurbit crops, causing yield losses of up to
80% (Latin 2000; Saalau Rojas et al. 2011; Smith 1911). Smith’s
belief that striped and spotted cucumber beetles (Acalymma vittatum
Fabricius and Diabrotica undecimpunctata howardi Barber, respec-
tively) were vectors of E. tracheiphila was confirmed by Rand and
Enlows in 1916 (Rand and Enlows 1916). Rand and colleagues also
indicated that bacteria could overwinter inside the adult striped cucum-
ber beetle, which is the most important vector species of cucurbit bac-
terial wilt (Bassi 1983; Ellers-Kirk et al. 2000; Rand and Cash 1920).
After this initial flush of discovery, scientific knowledge of

E. tracheiphila and bacterial wilt advanced very little for nearly 80 years,
in part because the pathogen can be challenging to isolate and bacterial
wilt epidemics occur only sporadically. However, a wave of research
progress has gathered momentum for the past two decades, yielding
many new insights into bacterial wilt ecology, genetics, etiology,
and management. This article—the first review of the bacterial wilt

pathosystem—integrates current and historical information about
the host, vectors, and pathogen. We highlight recent research in
areas that are especially promising in understanding bacterial wilt ep-
idemiology and improving the effectiveness of disease management.

Biogeography and Symptomology
Production of bacterial wilt-susceptible cucurbit crops currently

exceeds 65,000 ha in the eastern half of the United States, represent-
ing about half of the total cucurbit crop acreage in the nation (USDA-
NASS 2012). Bacterial wilt is regarded as a major threat for cucurbit
production in much of this area—including the Midwest, Mid-Atlantic,
andNortheast regions—as well as extreme southern portions of Ontario
and Quebec, Canada (Fig. 1). Interestingly, the disease appears to be
rare or unknown in other areas of the world.
E. tracheiphila is a xylem pathogen. Transmission occurs when

cucumber beetles feed on plants and deposit infested frass onto fresh
feeding wounds on leaves or flower nectaries (Leach 1964; Sasu et al.
2010a). Once inside the xylem the bacteria multiply, produce extra-
cellular polysaccharides (slime), and obstruct xylem vessels. Strands
of bacterial slime are sometimes visible when the cut ends of wilting
stems are slowly pulled apart (Fig. 2) (Latin 2000). This diagnostic sign of
the disease is useful in cucumber (Cucumis sativus L.) and muskmelon
(C. melo L.), but is not seen consistently in squash (Cucurbita
maxima Duchesne, C. moschata Duchesne, C. pepo L.) or pumpkin
(C. pepo L.) (B. Bruton and E. Saalau Rojas, unpublished data).
Bacterial wilt derives its name from the characteristic wilting of

leaves and stems (Fig. 3), which is usually followed by foliar necrosis
and plant collapse (Fig. 4). Smith (1911) noted that symptoms begin
in leaf areas having visible cucumber beetle damage; he described
a darker green area that develops around the wounds, with the entire
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plant eventually changing to a dull green color. Affected leaves be-
come flaccid, followed bywilting of stems and vines. Initial wilt symp-
toms occur from 4 to >21 days after infection (de Mackiewicz et al.
1998; Saalau Rojas et al. 2013), but symptom expression varies among
cucurbit crops and with host phenology (Brust 1997b). As with other
cucurbits, pumpkin displays different symptoms depending on host
phenological stage. Seedlings that become infected early in the season
may exhibit relatively rapid wilting, soon followed by collapse. Since
bacterial wilt symptoms are easily confused with aboveground symp-
toms of root rots and other vascular diseases, isolation of the pathogen
followed by phenotypic identification, PCR, or other molecular assay
is necessary to confirm a diagnosis. With the exception of watermelon
(Citrullus lanatus (Thunb.) Matsum. & Nakai) and a few cultivars of
Cucurbita species (e.g., C. pepo, C. maxima, C. moschata), infected
plants rarely recover or yield marketable fruit.

Host Range, Susceptibility, and Etiology
Within the family Cucurbitaceae, cucumber and muskmelon are

highly susceptible to bacterial wilt whereas squash and pumpkin
are moderately susceptible and watermelon is apparently highly re-
sistant (Brust 1997b; Yao et al. 1996). During Smith’s early work
(Smith 1911), inoculating cucumber and muskmelon produced wilt-
ing “with certainty and regularity of clock-work,” but inoculation of
squash varieties often resulted in inconsistent disease development.
The ability of watermelon to serve as a host of E. tracheiphila is un-
clear. Natural occurrence of the disease on watermelon was reported
only anecdotally until recently, when it was confirmed in two

commercial fields in New Mexico (Sanogo et al. 2011), which is lo-
cated well outside the presumed geographic range of the disease.
In addition to commercially important cucurbit crops, some wild or

noncultivated cucurbit species are also susceptible (Rand and Enlows
1920; Sasu et al. 2010b). Inoculations performed more than a century
ago by Smith (1911) confirmed that buffalo gourd (Cucurbita foetidis-
sima (Kunth.)), coyote gourd (C. californica Torr. ex S. Watson), bur-
cucumber (Sicyos angulatus L.), and wild cucumber (Echinocystis
lobata (Michx.) Torr. & A. Gray) succumb to bacterial wilt.
Many key details of bacterial wilt etiology remain unclear. Wild

cucurbit species have been presumed to serve as reservoirs of
E. tracheiphila inocula that could be transmitted to crop fields (de
Mackiewicz et al. 1998), but there is no clear evidence supporting
this idea. Serological assays suggested the presence of E. tracheiphila
in noncucurbit herbaceous weed species, but these positive reactions
may have been due to nonviable cells, as researchers were unable to re-
isolate the pathogen fromany of the species investigated (de Mackiewicz
et al. 1998). Therefore, adult striped cucumber beetles are assumed
to be the primary overwintering reservoirs of E. tracheiphila, link-
ing infections in successive cucurbit growing seasons.
The impact of plant host phenology on susceptibility is gradually

becoming clearer. Pumpkin cultivars rapidly developed wilt symp-
toms and died when inoculated at the cotyledon stage, but showed
symptoms more slowly, and even recovered, within weeks after in-
oculation at the first- and second-true-leaf stages (Brust 1997b). A
survey of 59 cucurbit species inoculated with E. tracheiphila showed
results similar to those reported on pumpkin (Watterson et al. 1971).
Liu et al. (2013) demonstrated that wilt symptoms progressed consid-
erably faster inmuskmelon seedlings inoculated 2weeks after emergence
than those inoculated at 6 or 8 weeks, which may be attributable in part
to ontogenic resistance. Inoculum dose, age-related resistance, soil water

Fig. 1. Cucurbit bacterial wilt poses a major threat to cucurbit production in the
Midwest, Mid-Atlantic, and Northeast regions of the United States and southern
portions of Ontario and Quebec, Canada. Areas in which cucurbit bacterial wilt is
a significant economic concern (dark green) overlap with the geographic distribution
of the striped cucumber beetle (light green), which is the main vector of the disease.

Fig. 2. Bacterial “slime” can sometimes be observed as strands that form during the gentle
separation of cut stems of wilted vines infected by Erwinia tracheiphila. Photo courtesy
M. P. Hoffmann, reprinted from: Zitter, T. A., Hopkins, D. L., and Thomas, C. E., eds.
1996.Compendium of Cucurbit Diseases. American Phytopathological Society, St. Paul, MN.

Fig. 3. Wilted leaves are a characteristic early symptom of cucurbit bacterial wilt, as
shown on muskmelon.

Fig. 4. Infected plants often die before they yield fruit, as shown here for muskmelon.
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availability, and other host and environmental factors may also contrib-
ute to variation in symptom expression and disease progression.

Pathogen Biology
Erwinia tracheiphila is a gram-negative, motile, xylem-limited,

facultative anaerobic bacterium. Smith (1911) noted the difficulty
of isolating and working with this pathogen, which grows slowly
in culture and is easily overgrown by other microorganisms. Unlike
most Erwinia species, E. tracheiphila can be challenging to isolate
from macerated plant tissues. Nevertheless, consistent isolation
can be accomplished by surface-sterilizing stem and petiole segments
and directly plating the ooze exuded near the vascular elements (Hauben
and Swings 2005; Smith 1911), or in the absence of recoverable ooze,
placing the exposed vascular tissues directly onto solid medium such as
nutrient agar (NA) (Saalau Rojas et al. 2013).
On NAmedium, E. tracheiphila colonies are generally small, circu-

lar, viscous, and hyaline or white in color (Burkholder 1960). Colony
growth on NA, often amended with peptone, becomes visible 3 to
4 days after streaking (de Mackiewicz et al. 1998; Hauben and Swings
2005) when incubated within the optimal range of 25 to 30°C (Hauben
and Swings 2005). Identification of E. tracheiphila strains based on
phenotypic techniques such as nutrient requirements and carbon utili-
zation profiles has been unreliable due to variation among the few
strains examined (Hauben and Swings 2005; Starr and Mandel
1950; Wells et al. 1994). However, molecular-based methods have
provided consistent identification (Saalau Rojas et al. 2013).
Pathogenesis. In 1899, microscopic observations on artificially

inoculated plants led Smith (1911) to believe that mechanical plug-
ging of xylem vessels by E. tracheiphila cells interfered with water
conductance and induced wilting. E. tracheiphila has not been found
to produce hydrolytic or pectolytic enzymes (Main and Walker
1971), and in vivo assays suggested that impedance due to rapid bacterial
multiplication and direct blockage of vessels (Fig. 5) is the main mech-
anism for leaf and vine wilting (Smith 1911; Watterson et al. 1972).
The ability to obstruct xylem flow suggests the presence of many

E. tracheiphila cells in symptomatic tissues. Populations may reach
2.5 × 102 CFU/cm in stem sections dissected from disease-
susceptible cucumber plants. In contrast, only 10 CFU/cm were
found in stem sections of the resistant cucumber breeding line WR
18, suggesting that bacterial multiplication was limited in the resis-
tant line (Watterson et al. 1972). Resistance was also associated with
restriction of movement to only the first few internodes of inoculated
cucumber plants (Watterson et al. 1972), but this conclusion contra-
dicted an earlier study that found that E. tracheiphila moved to all
stem internodes of inoculated WR 18, as well as watermelon and

pumpkin cultivars, which either recovered from wilting or displayed
partial wilt symptoms (Watterson et al. 1971).
Genetic diversity and virulence. E. tracheiphila has consistently

been placed within the genus Erwinia since the initial description of
the pathogen. The species shows 94% similarity in 16S rDNA sequence
and 23% DNA relatedness by hybridization to the fire blight pathogen
E. amylovora, with 16S rDNA sequence-based phylogenetic analysis
indicating a strong relatedness to Enterobacter and Pantoea as well
as other Erwinia species (Brenner et al.1974; Hauben et al. 1998).
Comparison of 16S rDNA sequence data of six E. tracheiphila
strains isolated from various cucurbit crop hosts and geographic
regions revealed a difference of only one base pair among strains
(E. Saalau Rojas, unpublished data).
Nevertheless, historic and recent data suggest the existence of at least

two distinct E. tracheiphila subgroups. Smith’s (1911) cross-inoculation
assays on various cucurbit host species suggested that E. tracheiphila
strains vary in their virulence in a host-dependent manner. For example,
strains isolated from muskmelon were highly virulent on muskmelon
and cucumber but caused much slower symptom development or no
symptoms on squash (Smith 1911). Repetitive element palindromic
PCR (rep-PCR) assays performed with ERIC1-2 and BOX A1R pri-
mers of 69 E. tracheiphila strains from eight U.S. states revealed dis-
tinct fingerprint profiles for strains isolated from Cucumis versus
Cucurbita species (Saalau Rojas et al. 2013). Consistent with Smith’s
(1911) observations, pathogenicity assays using these strains indicated
that E. tracheiphila induced wilt symptoms rapidly when inoculated
onto hosts within the genus of isolation, but significantly slower when
cross-inoculated onto hosts distinct from the genus of isolation (Fig. 6)
(Saalau Rojas et al. 2013). These observations support a possible divi-
sion of E. tracheiphila into subspecies that differ in host preference.

Vector and Transmission Biology
Vectors. Both striped and spotted cucumber beetles belong to the

taxonomically diverse subtribe Diabroticina, which includes some of
the world’s most destructive insect pests of crop plants (Gould 1944).
Diabroticite adults feed on stems, leaves, and flower parts whereas
larvae feed primarily on roots (Tallamy and Krischik 1989). Al-
though striped cucumber beetles (Acalymma vittatum) are cucurbit
specialists, closely related Diabrotica species, including spotted cu-
cumber beetles (Fig. 7), are polyphagous and occur commonly in
cucurbit fields (Fisher et al. 1984; Metcalf and Lampman 1989).
The role of spotted cucumber beetles and other Diabrotica species
in transmission and spread of bacterial wilt has been largely unexplored.
Preliminary data from a recent survey in Quebec, Canada, indicate that
adult beetles of two additional species, the western (Diabrotica virgifera
LeConte) and northern (D. barberi Smith & Lawrence) corn rootworm
beetles, may also be vectors of E. tracheiphila, as suggested by PCR

Fig. 5. Cells of Erwinia tracheiphila multiply in xylem vessels, obstructing the flow of
water. Cells are visible (arrows) in this scanning electron micrograph of the pit
membrane of a xylem element. Photograph courtesy B. Bruton.

Fig. 6. Host preference of Erwinia tracheiphila strains is indicated by the slow rate
of symptom development of a muskmelon (Cucumis melo) plant inoculated with an
E. tracheiphila strain isolated from squash (Cucurbita pepo) (left) compared with the
rapid rate of symptom development of a muskmelon plant inoculated with a strain
originally isolated from muskmelon (right).
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detection of E. tracheiphila in beetles collected in cucurbit fields
(Toussaint et al. 2013). Insects outside the Diabroticina subtribe that
are commonly found in cucurbit fields, including squash bugs (Anasa
tristis), aphids (Aphis gossypii), squash lady beetles (Epilachna borealis),
potato flea beetles (Epitrix cucumeris), and bees (Apismellifera), have not
been found to carry or transmit the pathogen (Rand and Enlows 1920).
Bacterial wilt epidemics are strongly associated with striped cucumber

beetle population density and behavior (Fleischer et al. 1999), indicat-
ing the importance of this beetle as a vector of bacterial wilt. Striped
cucumber beetles overwinter as adults, are distributed throughout the
geographic range of bacterial wilt, and specialize on cucurbits (Gould
1944; Munroe and Smith 1980). They are present as potential vectors
early in a growing season, when plants are more susceptible to the dis-
ease than at later crop stages (Liu et al. 2013). Several Diabrotica spe-
cies overwinter as eggs or adults in the southern United States (Krysan
1986), whichmay explainwhy spotted cucumber beetles do not appear
in northern states until after the spring emergence of striped cucumber
beetles. To date, research on bacterial wilt epidemiology and vector
interactions has focused primarily on striped cucumber beetles.
Vector-pathogen interactions. Transmission of E tracheiphila

occurs when bacteria-infested frass and contaminated beetle
mouthparts come into contact with plant wounds (Fig. 8) or floral
nectaries (Fig. 9) (Mitchell and Hanks 2009; Rand and Enlows
1920; Sasu et al. 2010a). Rand and Enlows (1920) reproduced wilt
symptoms on cucumber seedlings inoculated with extracts of
mouthparts and intestinal tracts of infested striped cucumber beetles,
as well as with spotted cucumber beetles that were initially allowed to
feed on artificially inoculated plants and then transferred to healthy
plants. Although E. tracheiphila-like cells were described within the
digestive system of striped cucumber beetles several decades later
(Garcia-Salazar et al. 2000a; Leach 1964), it was not until the turn of
the 21st century that immunological methods enabled direct detection
of E. tracheiphila within the insect’s gut (Garcia-Salazar et al. 2000b).
These studies employed immunolocalization and double antibody
sandwich (DAS)-ELISA with laboratory-reared colonies that were
fed on cucumber cotyledons smeared with E. tracheiphila—so-called
“cotyledon sandwiches” (Garcia-Salazar et al. 2000a). Most bacterial
cells were detected at the junction of the midgut and hindgut, but
some were also found in the foregut. Although bacterial populations
decreased significantly during the first 3 days after feeding, bacteria
were detected for up to 35 days after acquisition of the pathogen.
Mitchell and Hanks (2009) further explored transmissibility of E.

tracheiphila via frass using PCR-based methods and frass-inoculation
experiments. The authors allowed adult striped cucumber beetles to
feed on E. tracheiphila-smeared “sandwiches” for 24 h and frass
samples were collected at 24, 48, and 72 h after the feeding period.
Frass from each sampling period was used to inoculate cucumber
seedlings and assayed for the presence of E. tracheiphila DNA. Bac-
terial DNA was detectable for up to 72 h after ingestion of the

pathogen, and frass remained capable of transmitting E. tracheiphila
for up to 48 h. In a second assay to determine whether longer feeding
periods increased pathogen retention in striped cucumber beetle
adults, beetles were allowed to feed on E. tracheiphila cotyledon
sandwiches for a 7-day period and bacterial DNA was detected in
frass for up to 4 days after pathogen ingestion (Mitchell and Hanks
2009). Taken together, these findings suggested that pathogen reten-
tion and transmission dynamics are heavily influenced by duration of
the feeding period, but do not support the possibility that striped cu-
cumber beetles serve as long-term vectors of E. tracheiphila within

Fig. 7. Spotted cucumber beetles (Diabrotica undecimpunctata howardi) transmit
Erwinia tracheiphila; however, their importance in the epidemiology of cucurbit
bacterial wilt has not been elucidated. Photograph courtesy M. Asche.

Fig. 9. Cucumber beetles are highly attracted to cucurbit flowers. In at least some
cucurbit hosts, Erwinia tracheiphila can enter the vascular system through floral
nectaries. Photograph courtesy A. Boesch.

Fig. 8. Transmission occurs mainly when diabroticite beetles, such as the striped
cucumber beetle (Acalymma vittatum) shown here, deposit Erwinia tracheiphila-
infested frass onto fresh feeding wounds. Photograph courtesy R. Durgy.
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a growing season. Mitchell and Hanks (2009) also noticed that detec-
tion and transmission of the pathogen varied among the different
E. tracheiphila strains they used, suggesting that strain diversity
could play a role in vector competence and disease dynamics.
More recently, Shapiro et al. (2014) developed a real-time quan-

titative PCR assay to characterize pathogen acquisition and retention
time by striped cucumber beetles. After 3- and 24-h acquisition access
periods (AAP) on E. tracheiphila-infected plants, they estimated bac-
terial populations inwhole beetles and frass. As inMitchell andHanks’
work, longer AAP resulted in longer-term pathogen retention (Shapiro
et al. 2014). Interestingly, quantification of E. tracheiphila populations
at 5 and 28 days after AAP suggested that multiplication was occurring
within the beetle gut. Although the mechanisms underlying persistent
colonization of striped cucumber beetle remain undescribed, it is now
clear that A. vittatum is a persistent vector and long-term reservoir of
E. tracheiphila (Garcia-Salazar et al. 2000b; Shapiro 2012).
Although Erwin Smith (1911) recognized the mechanism and

epidemiological importance of transmission through leaves, infec-
tion through floral nectaries was demonstrated only recently as a route
of infection in a wild gourd (Cucurbita pepo ssp. texana) and musk-
melon (Gautam et al. 2011; Sasu et al. 2010a). Striped cucumber bee-
tles and other diabroticite beetles are strongly attracted to the yellow
color of cucurbit flowers as well as to certain volatile compounds
they emit (Lewis et al. 1990; Metcalf and Lampman 1989). In Penn-
sylvania field trials, 95% of C. pepo plants had E. tracheiphila-
infested frass on the corolla or nectaries of flowers. This discovery
led to the suggestion that beetle aggregation behavior and deposition
of bacteria-infested frass in flowers may result in high rates of

exposure to the bacterial wilt pathogen during the middle of the
growing season, when each plant may produce up to several dozen
flowers daily (Sasu et al. 2010b). In greenhouse experiments, nectar
was present and found to have antimicrobial properties (Sasu et al.
2010b). However, after removal of nectar, artificial inoculation
through floral nectaries resulted in a 36% increase in bacterial wilt
incidence (Sasu et al. 2010b).
The extent to which epiphytic populations of E. tracheiphila func-

tion as reservoirs of inoculum is uncertain. Preliminary work by
Brust (1997a) suggested that the pathogen could survive and infect
muskmelon for up to 6 h after inoculum had been placed on leaf sur-
faces. A recent growth chamber study found that epiphytic popula-
tions of E. tracheiphila remained viable for up to 2 days on
muskmelon leaves, even after exposure to alternating 12-h cycles
of wet and dry conditions (Saalau Rojas and Gleason 2012). As with
other epiphytic pathogens, however, survival was enhanced by leaf
wetness, supporting previous anecdotal observations that disease de-
velopment was favored by wet weather conditions (Rand and Enlows
1920; Sherf and MacNab 1986). These findings raise the possibility
that epiphytic populations on leaf or floral surfaces serve as inoculum
reservoirs that could potentially influence disease development.
Seasonal dynamics of vectors and disease. Adult striped cucum-

ber beetles overwinter in or near cucurbit fields, in the top 2 to 3 cm of
soil or under plant debris (Gould 1944; Radin and Drummond
1994b). Beetles become active in spring when air temperatures ex-
ceed 12°C. In the Midwest United States, striped cucumber beetles
move into cucurbit fields from overwintering sites during late April
through June (Fig. 10) (Brust 1997c; Radin and Drummond 1994b).

Fig. 10. The cucurbit bacterial wilt disease cycle.
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Field and serological assays suggested that a small proportion (1 to
10%) of overwintering striped cucumber beetles harbor and are able
to transmit E. tracheiphila (Brust 1997c; Doolittle 1921; Fleischer
et al. 1999). In Pennsylvania fields that had been planted to cucurbit
crops the previous season, 7 to 10% of overwintering striped cucum-
ber beetles that emerged within cages tested positive for E. trachei-
phila by DAS-ELISA (Fleischer et al. 1999). In a 4-year study in
Indiana, only approximately 1% of overwintering beetles collected
in May or June transmitted the disease to muskmelon seedlings
(Brust 1997c). When the experiment was repeated with beetles col-
lected in July and September, however, disease transmission to seed-
lings rose to approximately 10%, suggesting that an increasing
percentage of beetles carried and transmitted the pathogen as the sea-
son progressed. In a Pennsylvania study, the proportion of beetles
testing positive for E. tracheiphila rose from 39 to 78% as the season
progressed, but this increase did not necessarily lead to increased dis-
ease transmission when individual beetles were caged in muskmelon
seedling bioassays (Fleischer et al. 1999). Despite a higher propor-
tion of beetles carrying E. tracheiphila, a decrease in disease trans-
mission rate that often occurs in cucurbit fields later in the season
may be due to phenological changes in vector behavior or develop-
mental changes in the host or host-pathogen interactions. For exam-
ple, mature cucurbit plants may be less attractive to beetles because
they may have lower levels of cucurbitacin (Tallamy and Krischik
1989). Additionally, as previously stated, older plants may become
more tolerant of infection, as reflected in a delay in the onset of wilt
symptoms, possibly due to increased ontogenic resistance, plant size,
or both (Liu et al. 2013; Lukezic et al. 1996).
During the mid to late growing season, E. tracheiphila can be

transmitted by subsequent generations of beetles. Overwintering
females lay their eggs at the base of cucurbit plants, allowing the
larvae to feed on the roots and develop into first-generation adults
(Ellers-Kirk and Fleischer 2006; Ellers-Kirk et al. 2000). Depending
on climatic conditions and geographic region, two or more genera-
tions of striped cucumber beetle may develop within a growing
season. There is no evidence of transovarian transmission of E.
tracheiphila; consequently, it is assumed that newly emerged adults
must feed on E. tracheiphila-infected plants in order to acquire and
further disseminate the pathogen. In-field monitoring of striped
cucumber beetle in Iowa, Pennsylvania, and Kentucky showed sig-
nificant generation overlap (Bachmann 2013), limiting ability to ac-
curately predict timing of pest activity or extent of pathogen
carryover to the following growing season.
Beetle behavior and population density strongly influence the se-

verity of bacterial wilt epidemics. Even though available evidence
indicates that few overwintering beetles carry E. tracheiphila,
early-season infections often lead to more devastating outbreaks than
late-season infections. Mass immigration into cucurbit fields is pro-
moted by attraction to volatile biochemicals emitted by seedlings
(Lewis et al. 1990). As with beetle aggregation behavior, this immi-
gration likely increases the probability of bacterial wilt infection due
to both increased beetle numbers and concentrated feeding damage.
The importance of feeding damage was demonstrated in greenhouse
studies by the finding that muskmelon plants were 50% more likely
to develop wilt when E. tracheiphila inoculum was placed on leaves
with large wounds than on leaves with small wounds (Brust 1997a).
In field data from Alabama and Indiana, regression models revealed
a positive, significant relationship between beetle populations and
bacterial wilt severity and incidence (Brust and Foster 1999; Yao
et al. 1996). A similar effect was observed in greenhouse experiments
on muskmelon: preferential feeding of beetles on certain cultivars
(i.e., ‘Makdimon,’ ‘Rocky Sweet,’ ‘Legend,’ and ‘Cordele’), perhaps
due to visual or gustatory cues, resulted in greater feeding damage
and higher incidence of bacterial wilt than in other cultivars (Brust
and Rane 1995).
Chemical ecology of beetles and cucurbits. One way to gain in-

sight into the epidemiology of bacterial wilt is to look into the coevo-
lutionary associations of cucumber beetles and the Cucurbitaceae
family. Researchers conjecture that specialization of diabroticite species
to cucurbit host plants may have originated from ancestral beetles that

served as pollinators of cucurbits (Metcalf and Lampman 1989). Cucur-
bits produce a variety of chemical compounds, such as cucurbitacin
and volatiles, which are not directly tied to primary metabolism but
play major roles in host-plant identification, beetle feeding,
and mating behavior (Lewis et al. 1990; Metcalf and Lampman
1989). Cucurbitacins are nonvolatile, extremely bitter-tasting plant
compounds that are ubiquitous in cotyledons, leaves, roots, and
fruit of most ancestral cucurbit species. They generally serve as
feeding deterrents to protect plants from insect herbivory. With
diabroticites, however, cucurbitacins stimulate locomotive arrest
and compulsive feeding (Ferguson and Metcalf 1985). Molecular
phylogenetic analyses support the hypothesis that cucurbitacin
feeding by polyphagous diabroticites is a result of convergent
evolution associated with pollen forage and cucurbitacin consumption
benefits rather than an ancestral host association to cucurbit plants
(Gillespie et al. 2003). For example, cucurbitacin protects cucumber
beetles from birds, predaceous insects, and entomopathogenic
fungi (Metcalf and Lampman 1989; Tallamy et al. 1998).
Moreover, cucurbitacin consumption by diabroticite males can
influence mating behavior; cucurbitacins are used as nuptial gifts
that are transferred to females during mating, and influence female
mating probabilities (Tallamy et al. 2000).
Male striped cucumber beetles are the first to locate cucurbit plants

(Fig. 11), and these “pioneer males” have been shown to attract
additional males through production of an aggregation pheromone,
volatiles associated with their frass, and volatiles associated with her-
bivory on plants (Smyth and Hoffmann 2003). This behavior is seem-
ingly unaffected by cucurbitacin consumption and more likely
associated with male feeding rates or other chemical signals (Smyth
and Hoffmann 2002). The evolutionary reason behind the production
of an aggregation pheromone remains unclear; however, this behav-
ior may serve to maximize early-season colonization of host plants
(Smyth and Hoffmann 2003) and locate mates.
Whereas cucurbitacins and volatiles in young plants promote rapid

beetle localization to a host and aggregated beetle feeding, cucurbit
floral volatiles may help cucumber beetles to find host plants over
long distances later in the season (Lewis et al. 1990). Olfactory attrac-
tion to cucurbit blossoms may lead diabroticite adults to pollen, an
important component of their diets (Metcalf and Lampman 1989;
Siegfried and Mullin 1990), and possibly explains the primary associ-
ation of diabroticites with cucurbit plants (Gould 1944). The recent dis-
covery that bacterial wilt infection can also occur via floral nectaries
suggests that attraction to floral volatiles may be a more important fac-
tor in bacterial wilt epidemics than previously considered (Sasu et al.
2010a). The relative significance of nectar-removing pollinators versus
disease-transmitting beetles and floral versus foliar routes of infection
in the development of bacterial wilt epidemics in commercial cucurbit

Fig. 11. Striped cucumber beetles become active in the spring and can quickly locate
and colonize young cucurbit plants. Photo courtesy E. Burkness.
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fields is not clear. However, field experiments with wild gourd showed
that genotypes producing the most flowers also had the highest inci-
dence of bacterial wilt, suggesting that floral display attracts more vec-
tors and results in significant disease exposure during the bloom period
(Ferrari et al. 2006; Sasu et al. 2009).
Pathogen-induced volatiles. Factors influencing host selection

and vector feeding preferences can have a direct impact on plant disease
epidemiology, but these interactions have been largely overlooked in
phytobacterial pathosystems. Striped cucumber beetle aggregation on
wilting leaves was originally observed by Smith (1911) and noted in
more recent studies (Moran 2001; Yao et al. 1996). Such behavior
may be associated with higher levels of cucurbitacins in symptomatic
tissue. For example, a cage assay showed that wilting of cucumber
plants that was induced by E. tracheiphila inoculation or water stress
significantly increased beetle aggregation and cucurbitacin concentra-
tions when compared with nonwilted plants (Haynes and Jones 1975).
This observation raises the question of whetherE. tracheiphila induces
host-plant changes that modulate vector behavior. Abundant evidence
indicates that insect herbivory and pathogen infection can modify
volatile plant emissions that influence disease dynamics (Mann
et al. 2012). In both field and laboratory plant volatile collections,
Shapiro et al. (2012) demonstrated that E. tracheiphila infection
induced the release of a characteristic bouquet of volatile organic
compounds in wilting C. pepo ssp. texana leaves. In field trials and
feeding choice assays, striped cucumber beetles aggregated on and
showed feeding preference toward symptomatic leaves over healthy
leaves, and healthy flowers were significantly more attractive than
flowers collected from bacterial wilt-infected plants. Collectively,
these results support a model in which E. tracheiphila promotes its
acquisition and dissemination by altering plant volatiles to attract
beetles to symptomatic leaves and, moreover, exploits the attractiveness
of beetles to healthy flowers by using floral nectaries as a site of
infection (Sasu et al. 2010a; Shapiro et al. 2012).

Management
Management of bacterial wilt relies primarily on insecticide appli-

cations against cucumber beetles. Although feeding damage alone
can significantly impact plant stand and yield in commercial cucurbit
plantings (Hoffmann et al. 2000), the primary motivation for using
insecticides against cucumber beetles in the high-risk geographic
regions is the threat of bacterial wilt transmission (Burkness and
Hutchison 1998). Because commercially acceptable disease-resistant
cultivars are nearly nonexistent, cucumber beetle management is the
mainstay of bacterial wilt management programs. The first few weeks

after transplant or seedling emergence are critical for bacterial wilt
suppression. Conservative economic thresholds for striped cucumber
beetles often lead to either preventative or calendar-based insecticide
applications at the first sight of beetles in the field (Burkness and
Hutchison 1998; Fleischer et al. 1999).
Insecticides and kairomonal baits. In the United States, cucum-

ber beetles are managed using systemic insecticides on transplants
before planting, or in the furrow during planting (Dively and Kamel
2012). Neonicotinoid insecticides are widely used as seed treatments.
Neonicotinoids largely replaced earlier materials, such as carbofuran,
which were much more toxic to humans and birds, were a concern for
ground water contamination, and exhibited reduced effectiveness in
soils with a history of use (EPA 2006). Neonicotinoids, however,
have been shown to be toxic to bees and other pollinators, and many
recent studies have suggested that they play a role in declining hon-
eybee populations (Whitehorn et al. 2012).
In cucurbit production, however, neonicotinoid insecticides are ef-

fective against cucumber beetles and suppress bacterial wilt epidemics.
In Pennsylvania for example, application of the neonicotinoid imid-
acloprid on seedlings resulted in reduced striped cucumber beetle
colonization and bacterial wilt transmission (Fleischer et al. 1998).
Although bacterial wilt symptoms were observed in the field, low doses
of systemic insecticides applied at planting suppressed colonization by
striped cucumber beetles while reducing the need for weekly foliar ap-
plications of insecticides (Fleischer et al. 1998; Mac Intyre Allen et al.
2001). If contact insecticides are used, numerous foliar applications
may be required throughout the growing season to adequately control
beetle immigration, and bacterial wilt transmission may occur even
when sprays are applied weekly (Brust and Foster 1995). When facing
large striped cucumber beetle populations, some growers deploy these
insecticides at 5-day intervals, which can sum to 8 to 10 applications
in a single season (Brust and Foster 1995; Lam and Foster 2006).
Whether systemic or contact insecticides are used to manage cu-

cumber beetle populations, periodic scouting is recommended to re-
duce unnecessary pesticide applications. In the Midwest, Brust and
Foster (1999) established an action threshold of one beetle per plant
for adequate protection against cucumber beetle damage and bacte-
rial wilt. Implementation of action thresholds on curcurbits along
with direct scouting and/or the use of yellow sticky traps for moni-
toring can effectively control bacterial wilt while avoiding several
insecticide sprays (Burkness and Hutchison 1998; Lam 2007).
Toxic kairomonal baits have been used as an alternative to foliar

insecticide applications. Baits containing cucurbitacins and floral
volatiles in combination with the insecticide carbaryl (1-naphtyl methyl-
carbamate) reduced beetle damage in the field (Brust and Foster 1995,
Fleischer and Kirk 1994). In Indiana, baits significantly reduced beetle
feeding damage when compared with nontreated plants (Brust and
Foster 1995). However, toxic baits did not provide rapid knockdown
of beetle populations. Because bacterial wilt transmission may occur
even at low beetle densities, rapid knockdown is essential for adequate
disease management (Brust and Foster 1995). Additionally, effective-
ness of kairomonal baiting methods and traps varies among diabroti-
cite species and between genders (Fleischer and Kirk 1994).
Perimeter trap cropping. Over the past 20 years, research efforts

have emphasized alternative approaches to manage cucumber beetles
with fewer insecticide applications (Burkness and Hutchison 1998; Pair
1997; Radin andDrummond 1994a; Saalau Rojas et al. 2011). A perim-
eter trap crop (PTC) strategy consists of planting a border that can in-
tercept incoming pests and thereby protect the main crop from damage
(Fig. 12) (Boucher and Durgy 2004). In a cucurbit cropping system,
a PTC strategy exploits cucumber beetle feeding preferences and aggre-
gated feeding patterns by deploying highly attractive border plants
(Adler and Hazzard 2009). In New England, a PTC strategy reduced
insecticide applications by >90% on a butternut squash main crop,
and acceptable bacterial wilt control was achieved by monitoring beetle
populations and focusingmost insecticide applications on the ‘Hubbard’
squash trap crop (Cavanagh et al. 2009). Field trials in Iowa and Ohio,
using buttercup squash (Cucurbita maxima) as a perimeter trap crop,
suppressed bacterial wilt incidence on muskmelon while eliminating
three to four insecticide applications per season (Bartel 2012).

Fig. 12. Perimeter trap crops can be an effective strategy to manage bacterial wilt with
fewer insecticide applications than dictated by conventional management practices. The
image on the left shows two rows of buttercup squash (Cucurbita maxima) planted
around a muskmelon (Cucumis melo) main crop; in this cropping pattern, the squash,
which is highly attractive to striped cucumber beetle, can serve as a barrier against
beetle entry into the main crop. The image on the right shows row covers protecting
muskmelon seedlings from beetle damage. Photograph courtesy J. Batzer.
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Growers with successive plantings within a season can benefit
from the beetles’ propensity to colonize specific areas. By aggres-
sively controlling beetles on early-planted crops and deploying late
plantings, growers in Pennsylvania achieved a management result
similar to that with PTC (S. Fleischer, unpublished data).
The efficacy of a PTC strategy to control bacterial wilt depends

greatly on perimeter crop host selection. Because cucumber beetle
behavior and field aggregation patterns are heavily influenced by
chemical and visual cues (Lewis et al. 1990, Metcalf and Lampman
1989, Radin and Drummond 1994a), an ideal perimeter crop should
be equally or more attractive to beetles than the main crop. Moreover,
the perimeter crop should be moderately resistant to bacterial wilt to
prevent disease from spreading into the main crop.
Row covers. Row covers are commonly used in vegetable crops to

enhance earliness of yield and protect plants fromharshweather and insect
pests (Orozco-S. et al. 1994; Vaissiere and Froissart 1996). In Iowa,
deployment of spunbond polypropylene row covers after transplant
protected muskmelon against bacterial wilt (Mueller et al. 2006; Saalau
Rojas et al. 2011). Traditionally, row covers are removed at anthesis
(first appearance of perfect flowers) on cucurbit crops to enable
pollination and avoid harvest delays (Gaye et al. 1991). Interestingly,
delaying removal of row covers until 10 days after anthesis reduced
bacterial wilt incidence in Iowa field trials by 33 or 50% compared
with row cover removal at anthesis or noncovered controls,
respectively (Saalau Rojas et al. 2011). However, there are tradeoffs
associated with this strategy. Extending the row-covered period beyond
the start of bloom delays not only cucumber beetle access but also
pollinator access, which can in turn delay pollination and harvest. This
delay could be a disadvantage for growers in markets that award
premium prices to early-season produce (Brust and Foster 1995).
Despite its potential as an alternative to insecticide use, delayed harvest,
high material costs, and intensive labor requirements currently constrain
large-scale implementation of row covers (Saalau Rojas et al. 2011).
Biological and cultural control. Few studies have focused on

biological control methods against cucumber beetles. Tachinid flies
(Celatoria setosa) and braconid wasps (Censtistes diabroticae) have
been reported to parasitize striped cucumber beetles; however, the
impact of these parasitoids on cucumber beetle management in field
conditions has not been quantified (Smyth and Hoffmann 2010).
Soil management practices and deployment of plastic mulches can re-

duce cucumber beetle populations inmuskmelon, cucumber, and squash
(Andino andMotsenbocker 2004; Necibi et al. 1992). Aluminum-coated
or reflective mulches repel cucumber beetles with variable results,
whereas black plastic mulch can reduce the survival of striped cucumber
beetle larvae (Caldwell andClarke 1999; Necibi et al. 1992). Introducing
entomopathogenic nematodes through drip irrigation of cucumbers
grown in black plastic mulch can also control cucumber beetle larvae
(Ellers-Kirk et al. 2000). Integration of this method into a cucurbit pro-
duction system could decrease larval populations but would not control
early-season or overwintering beetle populations.
Plant growth-promoting rhizobacteria (PGPR) applied to cucumber

seeds can significantly reduce bacterial wilt incidence in greenhouse
and field experiments (Zehnder et al. 1997), but has not been consistently
effective (Hernández Heredia 2008). Field experiments comparing
PGPR seed treatments on cucumber have demonstrated that the use of
PGPR can result in significantly lower bacterial wilt incidence and cumu-
lative cucumber beetle populations at the end of the season (Zehnder et al.
1997). Themechanism behind the beneficial effect of PGPR on cucurbits
is not fully understood, but PGPRmay induce systemic resistance against
E. tracheiphila and other cucumber pathogens, and may also deter feed-
ing by cucumber beetles by reducing cucurbitacin levels in plant tissues
(Raupach and Kloepper 1998; Zehnder et al. 2001).

Outlook: Piecing Together the Puzzle
An increased awareness of pesticide hazards to human health and non-

target organisms, including pollinators and beneficial insects, has pro-
pelled arguments for reducing pesticide reliance and substituting or
supplementing with nonchemical pest management strategies. In the case
of cucurbit bacterial wilt, our rudimentary understanding of the genetic
and ecological components of the pathosystem has been a major barrier

to developing effective ecologically based disease management strate-
gies. In this section, we highlight progress in understanding ecological,
genetic, and epidemiological aspects of the bacterial wilt pathosystem,
and pinpoint important areas that remain largely unexplored.
Pathogenicity and host specificity. At present, we have an in-

complete understanding of traits or genes contributing to the virulence
and host specificity of E. tracheiphila. As with other xylem-invading
pathogens, the ability of E. tracheiphila to induce wilt may be due to
bacterial multiplicationwithin the xylem as well as to the production of
extracellular polysaccharides (EPS) (Denny 1995). A role for EPS in
the pathogenesis ofE. tracheiphila has not been shown and preliminary
data indicate variable rates and quantities of EPS production among
E. tracheiphila strains (Mason 2012). Knowledge of the chemical
and physical properties of EPS and the factors influencing EPS
production by E. tracheiphila may provide insights into the process
of host colonization and symptom induction at distinct phenological
stages and among different host species (Denny 1995).
The recent discovery of genetic and virulence differences among

E. tracheiphila strains isolated from different cucurbit genera raises
the possibility that host selection pressure has driven pathogen spe-
cialization (Saalau Rojas et al. 2013). Preliminary genome sequenc-
ing data for E. tracheiphila provided some clues to genes associated
with pathogenicity by indicating the presence of genes encoding
components of a type III secretion system (Shapiro 2012). A deeper
understanding of the genetics involved in host specificity could ulti-
mately hasten progress in developing cultivars that are resistant or
tolerant to bacterial wilt.
Vector-pathogen interactions. Despite seemingly close evolu-

tionary associations between striped cucumber beetle and E. trache-
iphila, key details of this interaction remain unknown. Although
E. tracheiphila overwinters in the digestive tract of striped cucumber
beetle, Mitchell and Hanks (2009) observed different levels of trans-
mission efficiency among bacterial strains in frass assays. The extent
to which E. tracheiphila strains differ in their acquisition, retention,
and transmission by cucumber beetles and other diabroticites has
not been rigorously examined. In other vector-transmitted bacterial
pathosystems, strain differences can significantly impact pathogen
acquisition, retention, and transmission, all of which may have direct
implications for disease incidence and distribution. For example, the
efficiency of vector acquisition and transmission of Xylella fastidiosa,
another xylem-limited pathogen vectored by insects, varies among
strains, potentially affecting disease incidence and spread (Lopes
et al. 2009). Interestingly, Pantoea stewartii, a close relative of
E. tracheiphila and the causal agent of Stewart’s wilt of corn, employs
a type III secretion system (T3SS) for retention and transmission
by flea beetles, and this is distinct from the T3SS that it uses for
interacting with plants (Correa et al. 2012). Investigating these
interactions between E. tracheiphila and cucumber beetles, including
differences among strains, could provide insights into new avenues
for suppressing bacterial wilt. A key epidemiological gap is in under-
standing the bacteria-beetle relationship during insect diapause and de-
termining rates of overwinter survival of E. tracheiphila in cucumber
beetles. Answers to these questions will help to explain how the dis-
ease propagates among growing seasons.
Geographic range.Given thewidespread distribution of the vectors

and bacterial wilt-susceptible crops throughout North America, why is
cucurbit bacterial wilt apparently limited primarily to the northeastern
quarter of North America? Possibilities include limited distribution of
competent vectors of the pathogen and geographic differences in the en-
vironmental conditions conducive to plant-pathogen or vector-pathogen
interactions. Given the critical role of striped cucumber beetle to the
disease, additional possibilities include geographical factors influencing
beetle behavior, their feeding preferences and modes of plant col-
onization, or differences in these factors among diabroticites, such as
spotted cucumber beetles, which can also transmit E. tracheiphila
but have not been examined for their impact in bacterial wilt epidemics.
Ecology-based management approaches. The near-absence of

commercial disease-resistant cucurbit cultivars, combined with the
critical role of beetles in pathogen dissemination, emphasizes the
critical need for effective management of the vectors. Employing
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phenological models to predict beetle arrival and emergence, thus
enabling growers to move beyond calendar-based applications and
reduce the number of insecticide sprays per season, may reduce
the use of insecticides. Non- and reduced-pesticidal strategies such
as row covers and PTC can be effective, but would benefit from
strategies to reduce the cost and labor involved in row cover
deployment and broader evaluation of PTC systems across host
species and cucurbit production areas, respectively. Field trials aimed
at optimizing row cover and PTC strategies, including approaches to
mechanize row cover deployment and removal, are underway by
several authors of this review.
Summing up. After slumbering for nearly 75 years since the pio-

neering discoveries of Erwin, Rand, and Enlows, research on cucurbit
bacterial wilt has reawakened over the past two decades. The modern
era of bacterial wilt research has made substantial progress toward under-
standing this complex pathosystem thanks to collaborations among plant
pathologists, entomologists, horticulturists, chemical ecologists, and mo-
lecular geneticists. Many puzzle pieces are still missing, but efforts are
underway to validate less insecticide-dependent management methods,
pinpoint pathogen genes responsible for pathogenicity and host
preference, and clarify the complex interplay among E. tracheiphila
strains, cucurbit hosts, and beetle vectors. A major advancement
would be the discovery of host genes that can facilitate resistance
breeding in the many vulnerable cucurbit crops.
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